PHYSICAL REVIEW E VOLUME 59, NUMBER 6 JUNE 1999

Decoding information by following parameter modulation with parameter adaptive control
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It has been proposed to realize secure communication using chaotic synchronization via transmission of a
binary message encoded by parameter modulation in the chaotic system. This paper considers the use of
parameter adaptive control techniques to extract the message, based on the assumptions that we know the
equation form of the chaotic system in the transmitter but do not have access to the precise values of the
parameters which are kept secret as a secure set. In the case in which a synchronizing system can be con-
structed using parameter adaptive control by the transmitted signal and the synchronization is robust to pa-
rameter mismatches, the parameter modulation can be revealed and the message decoded without resorting to
exact parameter values in the secure set. A practical local Lyapunov function method for designing parameter
adaptive control rules based on originally synchronized systems is presgpi€é3-651X%99)07206-2

PACS numbdss): 05.45.Gg, 43.72:q

I. INTRODUCTION also be extracted successfully.

. . . L Another work[16] has also shown that hidden messages
Chaotic dynamics, which have noiselike broadband poweg, he extracted from a chaotic carrier without reconstruct-

spectra, are interesting candidates for encoding and maskir;gg| the full dynamics, but using some suitable return maps,
information signals in communication. Most approaches prowhich is successfully applied to the Lorenz system for com-
posed to realize this basic idea of using a chaotic signal aswunication schemes | and Ill.

broadband carrier are based on the synchronization of The idea of encoding by parameter modulation is to use
coupled chaotic systeni4]. Several schemes have been pro-two chaotic attractorsi andB to represent the two symbols
posed so far(l) chaotic masking2,3], where the message is Of the digital signalg3,7,8|. Since A# B, it is possible to
added directly to the chaotic carrier with an amplitude muchconstruct some suitable return maps which can distinguish
lower than the chaotic carrieft!) chaotic modulatiorf4—6], the differences between the two attractors, thus reading out

where the message is injected into the chaotic system i€ Message, just as shown in Rdk]. However, if the two
. . . L attractors are rather complex or the differences between them
modulate the chaotic carrier, andll) chaotic switching

[3,7,8, where a binary message is transmitted by switChin(Egz?s\rng/leSlrjebtttlﬁﬁ I:ngsg pe very dificul fo find such distin-

between two chaotic attractors associated with two sets 0T |t is patural to ask if it is possible for a motivated intruder

parameters of the system. to follow the parameter modulation in the transmitter using

Intuitively, the communication is expected to be securesome parameter adaptive control by the transmitted signal.
based on two consideration@) it is difficult to read out the This paper carries out security analysis of communication
hidden message by any spectral analysis due to the broadystems using the encoding scheme Ill. Our analysis is based
band nature of the chaotic carrier, afig exact knowledge on the following assumptions.
of the parameters of the system in the receiver is necessary to (&) The intruder does not have access to the precise value
recover the message. Thus, a set of the system paramet&sany system parameters in the secure set.
which serve as the encryption key is not accessible by any (b) The intruder does know the functional form of the
third party. chaotic system in the transmitter. N

However, recently some researchers have shown that the OUr results will show that if a synchronizing system can
security may be spoiled, not by access to the secure set of tf¢ constructed using parameter adaptive control by the trans-
parameters, but by some other approaches. For the commﬁ‘-!tted signal and the synchronization is robust_to paramet(_er
nication schemegl) and (1), it has been shown that the mismatches, the messages may .be d(_ac_oded vv_|thout reso_rtmg
hidden message may be unmasked with some nonlinear d{? the exqct pargmeter values. Since |t.|s practically possible
namical forecasting method®,10]. It is believed that this TOF @ motivated intruder to locate a region close to the exact
weakness in security is due to low dimension and a singi®arameters based on the knowledge of the system and the
positive Lyapunov exponent of the chaotic carrier, and theharacter of the transmitted signal, the security may be
suggestion is to employ hyperchaotic systems, such a3poiled. Robustness of the synchron|zat|or_1 to parameter mis-
coupled chaotic arrayi$,11] or time-delay systemgl2,13 matc_hes is an advantage for |mplementat!on of the commu-
in communication. This, however, may not produce drastidlication scheme but may be a weakness in the security.
improvement in the security, as shown in a recent refdatt
that messages masked by hyperchaos of a six—dimension'r!l'lDECOD”\IG BY PARAMETER ADAPTIVE CONTROL
system can be unmasked only with a three-dimensional re- Let us consider the following transmitter system:
construction, and in our recent wofk5] demonstrating that
messages masked by chaos of time-delay systems with very d_X_ F( X) 1)
high dimension and many positive Lyapunov exponents can dt P 4.%),
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wherep andqg are system parameters. Binary messages ans stable alJ=0. « is a convergence parameter. Noting that
encoded by switchingl betweeng; and q,. Based on our the convergence df) is induced by control of the param-
assumption, a motivated intruder has known the equations dadters, we have
the system and that are modulated for encoding. He tries to

construct a decoding system using parameter adaptive con-

trol by the transmitted signa=h(x), as

day _daydv_ a4y

at v dt ‘Y @)

y In general, it is impossible to obtain an explicit formffor
gt =Py, ay.Y:9), (2)  the control rule in Eq(7). To solve this problem, we use a
control surface obtained in simulation or experiment. First
dqy we record a time seriesfrom systenmF(p,q,x) with a known
ot~ Gy.ay.s)s—hy)]. (3 set of parameterp(,q) in the chaotic regime. Then we per-

turb the parameter, in the driven systemH(p,qy,y,s)

Suppose that this systefealled theintruder system from  slightly from q to some values in its vicinity, and compute
now on) is synchronizable with some suitable coupling func-U(dy) as a function ofy, . For appropriately chosen function

tion G if py=p. u, U(qy) are smooth with respect g, close to the poing,
In general, it is not always possible that one can find a@nd in the vicinity, it can be approximated by
synchronizable intruder system for any transmitted signal U(gy)=M(a,—q), ®)

and any subsef of the system parameters. However, if with

this transmitted signad a synchronizable systeht(p,q,y,s) where the constantxXk matrix M is obtained by a local
can be found by some synchronization schemes, such dsear fitting of the numerically or experimentally obtained
Pecora-Carroll decompositi¢a], active-passive decomposi- control surfaceJ(q,). Now if the initial value ofq, is close
tion [4], or feedback contrdl17] withoutparameter adaptive to g, we can replace the Jacobian maisiy, /JU in Eq. (7)
control, then we can expect that additional parameter adagpy the matrixM 1, i.e.,

tive control loops for parameterg, existif the synchroniza- dq

tion is robust to parameter mismatches to some extent, be- Y _ MU, 9
cause the systerl driven by s is still stable(the largest dt

conditional Lyapunov exponent is negafivier parameters In practice, one can implement the above control rule by

gy in the vicinity of the pointg, = g, although exact synchro- . ; . . .
nization is spoiled by parameter mismatches, and the exa(r:?placmgu with a time average over a period of timee.g.,

synchronization can be restored by bringing the parameters 1
back to the pointj, = g using some appropriate control meth- Ui()= ;ﬁ
ods. For some systems, such parameter control rules can be

found by an analysis based on a global Lyapunov functionOften, the parameter modulation in the transmitter is much
In general, however, such an analytical treatment may not bslower than the time scale of the chaotic system, and one can
possible. In this case, we employ the idea of designing aimplify the control rule by replacing the time average
control rule using the information of a control surfdde8]  with u;, and finally obtain
constructed by perturbing the parametgys The essence of dq
the idea is that since the synchronization between the sys- ¥
temsH andF before incorporating parameter adaptive con- dt
trol is robust to parameter mismatches, the synchronization
behavior changes smoothly whepdeviates slightly frong.
And there exists a local Lyapunov function with respect to
the parameterg, nearg, with the form

u;dt. (10)

-T

—aMtu. (11)

We can expect that with the above additional parameter
adaptive control, the synchronization between the systems is
maintained with small enough coupling strengthfor g,
initially close toq, so that the parametegscan be recovered.

E(ay) = u'u, (4)  We can also expect that the synchronization is also robust to

mismatches of the rest parametprsThe functionu; can be

where U=(U,,U,, ... U are time averages of some chosen somewhat arbitrarily, as longlds[and thusE(q,)]

functions u=(uy,u,, ...,u)" (k is the number of the is a smooth function ofj, in the neighborhood of). This
components i), i.e., scheme provides a general and practical yet simple way to

107 build additional parameter adaptive control loops for origi-

U= lim _f udt (i=1,2,...Kk). (5)  hally coupled and synchronized systems, even though a

T—w 1 Jo proper choice of the functions; may still be nontrivial. In

this way, the intruder can design systematically an attacking
The functionu; has the formui=ﬁi(s,y,qy)[s—h(y)] so System for the communication scheme based on the knowl-
thatU=0 if g,=g. In order thatE(q,) is a local Lyapunov edge of the'system,_although such a designed control sch'eme
function, it is required thatl is smooth with respect tq, using local information may not be successful when applied

nearq. With this local Lyapunov function, the evolution sys- 0 the signal from the transmitter whose parameters the in-
tem truder does not know, especially when the transmitter is op-

erating in a parameter region far away from the one that the
intruder uses to build the control rule. However, it is possible
for the intruder to get into a neighborhood of the transmitter

du

E——aU (6)
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TABLE I. Values of the parameters of Chua’s circuit in the transmitter.

C1 (nF) C, (nF) R(Q) L (mH) Go (m9) Gy (m9) 1r (us) By (V)

10 100 1680 18 —0.753 —0.396 6 1
parameters using some system identification methods based 1
on the knowledge of the system. h(x1) =Gy + 5 (Go= Gu)[|x1+ Bp| = [x1 = By[],

Since the intruder system is quite robust to parameter mis- (15)
matches, the parameter modulation in the transmitter may be
revealed and the message decoded without resorting to ﬂ\]/vehich is a three-seament piecewise-linear function
exact values of the transmitter paramegrbut within some A bi 9 N Piec ded b i h'. b
tolerable neighborhood. In certain cases, it might also b? inary message streafy, is en(,:o_ ed by swi c,[]g e
possible to recover all the transmitter parameterg)) by ~ W/EeN parametersso, G, and Go=Go+1/r, G1=G,
designing adaptive control loops for them all with the above+.1/ r whep ”“? stream sw@ches betwef_all and—1, where
scheme. r is a resistor in parallel with Chua’s diode. The parameters

In the next sections, we present examples of message deSed are shown in Table I. Since s small(@bout 1% with
coding based on the above idea. In the first example ofeSPect 10G, and G,), the two chaotic attractors are very

Chua’s circuit, the control rule is obtained with a global SiMilar, as shown in Fig. 1. To examine the similarity, we
function analysis, and in the second example of the Loren£ONStruct return maps using the consecutive maxima(n)

system, the control rule is designed with the local Lyapuno@1dXma{n+1) from the transmitter signad,, as done in Ref.
function scheme. [16]. The results are shown in Fig. 2, with circles fg

=1 and crosses fdr,= —1, respectively. It is seen that the
maps are quite complicated, and most of the points of the
lll. EXAMPLE OF CHUA'S CIRCUIT two maps coincide and entangle with each other. A distin-
guishable difference between the two maps is only seen for
XmaxN) around— 0.5, which consists of only a small fraction
f the maxima. Extracting the message, although not totally
possible, can be done only for a small portion of the mes-
sage bits.

As an illustration, we carry out analysis on a specific
communication system proposed in Rief]. We first give a
brief description of the encoding scheme, and then construcf
a robust intruder system.

A. The transmitter B. The intruder system

The communication system employs the well-known — pgageq on our assumption, the intruder knows that the cha-
Chua circuit as the chaotic system. The evolution equationgyic system of the transmitter is Chua’s circuit and that the
for Chua’s circuit are given by message is encoded by the modulationGof and G;, but

dx; 1 does not know the value of any of the parameters
Clﬁz ﬁ(xz—xl)—h(xl), (12) C1,C,,R,L,B,,Gy,Gy,r. Based on the available informa-
tion, the intruder constructs a receiver system using the idea
of parameter adaptive control as follows:

dx, 1
szzﬁ(xl_xz)‘kx& 13 dy; 1
Cir =5 (Y2—y1) —h(xy), (16)
dt R
s _ 14
W_ _Xz' ( ) 3 T T T T 83 T /IA
2t V"Q\. -
The nonlinear characteristic of Chua’s diodéx,) is given - 1
by = 17 j
ol i
_ 5 0} . .
! ><E L . 1 s
0.5 _1 | + \+ %
o 0F ) I ! I L .
o5 -2 - 0 1 2 3
o X D)

FIG. 2. Return maps of the consecutive maxima of the transmit-
ted signalx;. Most of the points for the attractor {@a) (circles and

FIG. 1. Two attractors used to encode binary information, withthose for the attractor ifb) (crossesdo not have distinguishable
(a) corresponding to bit-1 and(b) to — 1. separation.
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dy, 1
szzﬁ(h—h)*‘%- 17
dy
Lt = Ve a8
dQy 1
~ar = 2 Xalyi—xalll-sgrfxi| = Bp)l, (19
daQ; 1
W:E><1[Y1_X1][1+59“|X1|_Bp)]' (20

where Q, and Q, are controllable parameters of(x,),
which is now

1
h(x1) =Q1xy + 5(Q0‘Q1)[|X1+ Bpl =[x~ Bpl].
(21

Equations(19) and (20) mean thatQq is modified when
|x1|<B, andQ; is modified whenx,|>B,,.

The intruder system of Eq$16)—(21) will synchronize
with the transmitter Eqs.(12)—(15) if the parameters

C1,C5,R,L,B,, are identical for the two systems. To prove

it, let us examine the dynamics of the differeneg=vy;
—X; (i=1,2,3),84=Qp— Gy, andes=Q;—G; given by

de; 1 1
ClE: ﬁ(ez_el)_ §X194[1_SQF(|X1| —By)]

1
— 5X1€5[ 1+sgr(|x;| —Bp)1,
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o 107 L .
107 ¢
(a) 1
-0.3 ‘ ;

100 200 300
t

FIG. 3. Synchronization process of the intruder to the attractor
in Fig. 2@). (@) Synchronization error\/%iz. (b) Convergence of
parameterf), andQ, to those of the transmittes,= —0.753 and
G,=—0.396, respectively. In all the figures in this paper, the unit
of time is ms.

1. We takeT=4.65 ms as in Ref.8]. With the transmitted
signals=x; [Fig. 4a)] carrying a random message stream,
the intruder observed the change of param@gandQ; in
Figs. 4b) and 4c), respectively. Switching between the two
chaotic attractors results in only small fluctuationsgf but
sudden jumps 0;, becausgx;|>B, most of the time so
that Q; is modified more frequently. After a transient of
about 50 msQ; comes to oscillate slightly abott0.395 for

bit +1 and—0.385 for bit—1. A comparison between the
evolution of Q; and the parameter modulation in the trans-
mitter shows clearly that the message can be decoded cor-
rectly except for a few bits during the synchronization tran-
sient. An interesting thing is that, sindeis much smaller
than the relaxation time of synchronizati@about 50 ms, see

2 (22) Fig. 3), the intruder operates in a regime of synchronization
transient after the message stream switches from one value to
@: P 23 the other. As a result, the oscillation amplitude®jf (about
274t R(el €)+es, (23 10 ; : :
us) is larger than the parameter modulation16 s in
de the transmitter, which can be an advantage for message de-
L—=—g,, (24)  coding. .
dt So far, we use the exact values of the transmitter param-
de, 1 eters_(;l,Cz,R,L,Bp in the intruder system to dgmonstrate
FTie E><1e1[1—sgr(|x1| -Bp]l, (250  thatitis able to follow the parameter modulation in the trans-
des 1 e .
ozl NN
. 2 P AT
The global Lyapunov function _O;i
E=C,ei+C,e5+Le5+ej+es, (27) . W
& -0.75
dE 2 5, 0, 0 28 076 ®)
—_— = — g -0. L
dt R(el+62) 1 ( ) _0.38
. -0.39 -
suggests that the state and parameters of the intruder system o oal
will converge to those of the transmitter. Figure 3 illustrates 041
the synchronization process of the system with the attractor T
in Fig. 1(@ (1;,=1). The synchronization error decreases 1F
= 0f

exponentially with time, with fluctuations only within small

time scales, and we can expect that the synchronization is ‘; ‘ . ‘ ‘

robust to parameter mismatches. Note that the stable values 0 100 200 300 400 500

Qo=—0.753 andQ, = —0.396 are just the values &, and t

G; in the transmitter. FIG. 4. The process of following the parameter modulation in
When the information stream enters the transmitter, lastthe transmitter(a) The transmitted signal=x;. (b) Change ofQ.

ing a time intervalTl for each bit, the transmitted signal is a (c) Change ofQ;. (d) The input message. The dotted line shows the

sequence switching between the two chaotic attractors in Figrarameter modulation in the transmitter.
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TABLE II. Parameters of the transmitter and the intruder and -0.32 . , ' '

their relative differences. -0.34 -

o -0.36 |

. -0.38 -
Transmitter C, C, R L B, 04
-0.34

Intruder 0.81C; 1.16X, 1.07R 0.891 0.848B, 036 |
Differences (%) —18.3 16.3 72 -103 151 é* —0'38

7 _oasl

. . . . —0.4 -
mitter by adaptive control. By assumption, the intruder does 2

not have access to these values. However, it is possible to 1
locate an approximate region in the parameter space using - ?
some characteristic quantities for system identification based o
on the knowledge of the chaotic system and at the same time 2

to monitor the synchronization error during the scanning of 1f ]
the parameter space. In the following simulation, we suppose =0 WMH”WW 1
that the intruder is able to locate a region within 20% devia- :; ‘ , . @ |
tion from the precise values of the parameters. We choose 0 100 200 300 400 500

five random values ifi—0.2,0.3 as the relative difference of !

the above parameters between the intruder and the transmit- FIG. 6. Analogous to Fig. 5, but witls containing noise be-

ter, as displayed in Table Il as an example. For the sam&veen[—0.2,0.7.

information stream in Fig. @), the evolution ofQ, is now

presented in Fig.®), which is shifted to oscillate quite nois- ment by a global Lyapunov function. In the following ex-

ily around —0.36 due to the parameter mismatches. Afterample, we revisit the communication system in Rg8s16]
smoothing the fluctuations with a moving average filter withto illustrate the idea of designing an intruder system using
a length of 4 ms, the oscillation @, reveals most of the the above local Lyapunov function method, although it has
parameter modulation in the transmitter correctly, as seen iheen shown that the message can be extracted using some
Fig. 5b). We use a simple threshold testing to recover thesuitable return mapgl6].

message, as shown in Fig(ch with a threshold Q= The communication system using the Lorenz system is
—0.365. A comparison between the recovered and the origi- dx
. . 1
nal messages has clearly shown that the security is compro- d—:g(xz—xl), (29
mised. The results are also robust to external noise, as seen T
in Fig. 6 for the same parameters as in Fig. 5, but with dx,
containing noise betwedn-0.2,0.3. . = Xe XaXs, (30
IV. EXAMPLE OF THE LORENZ SYSTEM dX3
. —— =X Xo— bX3, (31)
In the above example, we are able to write down the dr

parameter adaptive control rules based on an analytical treat-

where 0=16.0, r=45.6, andb is modulated betweefd
-0.32 T T T T

=4.0 andb=4.4. s=x, is the transmitted signal.
-0.34 b . . .
G -036 | | We can design an attacking system with parameter adap-
—038 | 1 tive control for parameteb based on the following system
04 : : : @ coupled by feedbackL7]:
y s W1 (Yo yp) +els—y1) (32
7 -0.36 | o= 0(Y2— Y1) T e(S—VY1),
9 -0.38 Ll dr
_0.4 U
dy,
2 2
1 dr  YiTY2TYiYs, (33
— 0
-1 dys
2 ar Y2~ bys, (34)
]
= 0 which will be synchronized with the system for large
-1 . \ ‘ ‘ ™ enough coupling strengtle. The synchronization is also
25 100 200 300 400 500 quite robust to parameter mismatches for laegeSince by

! assumption we do not know the parameter values in the

FIG. 5. An example of decoding procea) Evolution ofQ,. It (ransmitter, we used;r,b) =(10,28,8/3) from a chaotic re-
oscillates noisily due to quite large parameter mismatciis. 90N in experiment or simulation. Wite=40, for example,
SmoothedQ, by moving average with length of 4 ms. The dotted the two systems are synchronized. Now let systerasdy
line shows the parameter modulation in the transmitter.The  have the same andr, but perturb the parametérin the
decoded message by threshold testing with a thresi@jg- systemy aroundb=8/3, e.g.,by=b(1+A). We calculate
—0.365.(d) The original message stream. U(A) as a function ofA by trying the following three sim-
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100

N

c
|
o =

-1
2 L

5.0 ; : ‘
-50 | 45
Fe]
4.0 b
-100 . ()
-0.05 0 0.05 35 ‘ . ‘
A T 20 40 60 80

FIG. 7. U as a function of the relative deviation of the parameter t

b for different choice of functioru. The smooth functions can be  F!G- 9. The process of following the parameter modulation in
used to design the parameter adaptive control loop. the case in which the rest of the paramei@randr are identical.

plest functionsu;=(s—y;)y;, U,=(S—Y;)Y,, andus=(s b=4.0 in the transmitter from a large initial value=17.0
—y1)Ys . The results ofJ are shown in Fig. 7. It is seen that Within only a few ms(in the new time scale below

U is a smooth function foA close to zero for the functions ~ Now let us use the system to attack the secure communi-
u; andu,, but not forus. And it is obvious thal) is also a  cation. In order that the time scale agrees with the system in
smooth function for any linear combination af andu,.  [3,16], we introduce a new time scale=7/K, where K

Some other choices af are possible, for exampla=(s  =2505[16] is a scale factor. In the transmitter, the bit dura-
—y1)Y1Ys. Now we can introduce the additional parametertion is 4 ms. As in the above section, we first demonstrate
control loop the parameter recovery for identical parameterandr in
the transmitter and intruder systems, as seen in Fig. 9. Then,
db we examine the robustness to the parameter mismatches of
3, au (39  andr. The message can be recoved quite reliablyif ()

in the intruder system is within a relatively close neighbor-
hood of the transmitter, say within a 20% deviation. Message
whereu can beu,, U, any of their linear combinations, or decoding is generally extremely robust fot,<o andr,
many other possible choices. The sigmois determined by >r. An example foro,=0.37r andr,=1.72 is shown in
the sign ofdU/dA. Simulations have demonstrated that suchFig. 10. It is seen thab has been made to oscillate around
designed control rules maintain the synchronization dor b=2.2 rather tham=4.2 in the transmitter due to very large
small enough.« is allowed to be larger for larges. The  parameter mismatches, however the message is recoved cor-
control is still stable if the system parameters are shiftedtectly with a moving average filter with a length of 2 ms and
from (o,r,b)=(10,28,8/3) to those of the transmitter, and a simple threshold test.
the initial values of the parametérin the systemy do not In the following, we go further to design adaptive control
need to be close to that of the syst&nBince our purpose is loops for all three parameters (r,b) in the Lorenz system.
to illustrate the designing idea, we do not go into great detailve find thatU changes smoothly when the parameters in the
on the synchronization behavior in the parameter spaceriginally synchronized systems change slightly if we choose
(e,@). The fact is, in a large region of this parameter spacethe following three functions:
the synchronization is very robust to mismatches of the rest
parameters andr. An example of the synchronization with-

out and with the additional parameter control loop is shown 05 7
in Fig. 8 foru=u;=(s—y;)y;, (o.r,b)=(16.0,45.6,4.0), P WM
and (e,«)=(40,0.1). The synchronization is a little slower 2 @

when parameter adaptive control is introduced, and it is ro-

bust to parameter mismatches because the synchronization 24 -
error decreases exponentially, with fluctuations only within 23 i
very small time scales. The parameletomes very close to 2.1 k) 1

105 . . , 1 4
I I B )
s L
® o M ) M ‘ ‘
10—15 A M 2 T
16 . . r 1r :
-1

2 e ] @ ‘ ‘
- . . . 0 20 40 60 80
% 10 20 30 40 t
t FIG. 10. lllustration of message decoding when the parameters
FIG. 8. Synchronization and parameter recovery with the addi-c andr have large mismatches between the systém<£volution
tional parameter adaptive control loop of Eg5). (a) and(b) are  of b. (b) Smoothedb by moving average filter with length of 2 ms.
synchronization errors without and with this control loop, respec-(c) The decoded message by threshold testing with a threshpld

tively. (c) is the convergence of the parameler =2.2.(d) The original message stream.

<b>
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FIG. 11. Synchronization and parameter recovery with the ad- FIG. 13. Robustness of the message decoding in the presence of
ditional parameter adaptive control loops for all three parameterschannel noise withifi —1,1].
(a) Plots 1 and 2 are synchronization errors without and with these

control loops, respectivelyb), (c), and(d) are the evolutions of the dy;
parametersr, r, andb, respectively. E:hyz_bysa (39
Ur=(S=YDywYs,  Uz=(S=y1)¥z, %:a(—0.293J1—18.5U2+ 1573), (40
U3=(s—y1)(y1tya). (36) dr
The control surface is obtained by perturbing the parameters dr - (11814 95.4,=75415), (41)
in the driven system within a 2% vicinity of o{r,b) db
=(10,28,8/3).U; (i=1,2,3) is the time average of in a g, — @(=0.1231;-10.21,+8.10u5). (42)
T

period of 0.1 sec in the time scate After evaluating the

matrix M1, we obtained the following attacking system

with parameter adaptive control loops:

dy;
dr o(y2—Y1)+e(s—yi), (37)
-
dy
d_7-2 =ry;—Y>—VYiYs, (39

2 T T T

1 L
= 0t 1
> . . . @]
18 T T T T

17 b ]
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This system is synchronized for small enougleven if the
parameters have been shifted to those in the transmitter, i.e.,
(o,r,b)=(16.0,45.6,4.0). An example of the synchroniza-
tion and parameter recovery process is shown in Fig. 11 for
(e,a)=(100,0.2). The convergence rate with the additional
parameter adaptive control is slower than that without these
control loops. Now if the bit duration in the transmitter is
longer than the synchronization transient, the attacking sys-
tem can follow the parameter modulation in the transmitter
and thus decode the message. An example is shown in Fig.
12, where the bit duration is 16 ms. While the parameéter
clearly follows the modulation, the other two parameters also
reflect the switch of the message from one value to the other.
It is seen again in Fig. 11 that the synchronization error
decreases exponentially, with fluctuations only within very
small time scale, so that the message decoding is also very
robust to channel noise. Figure 13 shows the recovered pa-
rameters when the transmitted sigisat x, contains an ad-
ditive noise in[ —1,1].

V. DISCUSSION

Based on the assumption that the chaotic system structure
is in the public domain and the system parameters are kept in
secret as the encryption key in a secure communication sys-
tem encoding a digital message by parameter modulation, we

FIG. 12. The process of following the parameter modulation inhave shown how an intruder might decode the message using

the transmitter(a) is an input message streath), (c), and(d) are
the evolutions of the parametewss r, andb, respectively. The bit
duration is 16 ms.

an appropriate attacking system with parameter adaptive
control by the transmitted signal, even though the intruder
does not have access to the exact parameter values in the
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transmitter. A requirement for the success of this attackingnay not be successful in designing additional parameter
approach is that the intruder can design a synchronizing padaptive control loops for such systems. However, such sys-
rameter adaptive control system which is quite robust to mistems will not be used in the communication systems because
matches between the parameters of the two systems, so tih€ authorized receiver cannot decode the message correctly
the message can be recovered without resorting to the exalét practical environment with unavoidable perturbations.
parameters in the transmitter, but within some neighborhood. Employing some system identification methods, the in-
Based on the knowledge of the system, it is practically posIruder may be able to identify a region near the transmitter

sible for the intruder to get into such a neighborhood usingP@rameters in the parameter space in order to design a stable
some system identification methods. intruder system. Furthermore, the intruder may be able to get

For some systems, such a robust synchronizing intrude‘flose enough to the transmitter parameters by monitoring the

system with parameter adaptive control can be constructe nchronization error while scanning the parameter space, so

based on an analysis of a global Laypunov function. Genert— at the message can be_ decoded with a very low rate_ of
errors. During the decoding process, the intruder can im-

ally, such an analytical treatment is impossible, and we pro- . ) . ,
y y P P rove the decoding by comparison of the results using dif-

posed a quite general and practical local Lyapunov functio A ters in the identified region. | ¢ it
method to design parameter adaptive control rules based ong SNt parameters in the identilied region. 1n SOme systems, |
S also possible to design adaptive control loops for all the

system which has been synchronized by the transmitted si
nal. Such a synchronizing system is often obtainable usin ystem parameters, so that the message can be decoded even
: ore reliably.

many possible approaches for constructing synchronizatio . L . .
y.p PP g sy Based on our investigation, we would like to point out an

chaotic systems, such as Pecora-Carroll decompositiori\ teresting paradox between robustness and security in cha
active-passive decomposition, or feedback control. In man 9p y

systems, the synchronization is robust to parameter mis-t'Ct ﬁommugmattlons.l Slnce, In pract|p(je,b|;)arameter lrdnls-
matches if the coupling is not close to the synchronizatio atc fﬁ an e;(] ema tr_10|se arte una;/0|ba e,bwet V'llouth re-
threshold. The parameter control rules are designed by seefitlll€ h€ synchronization systems 1o be Tobust 1o these

ing appropriate functions of the synchronization error whosé)et;[.urhba(‘jt'gnf' SO tht?]t htlgh—qu_atltny sygctrrl]ronlztar;uon an be es-
time average changes smoothly when the parameters in ghgolished between the transmitter and the authorized receiver

L ; . ; {0 recover the message correctly in practical implementation.
riginall nchroniz m Vi lightly from h :
originally synchronized systems deviate slightly from eac On the other hand, this robustness may be employed by a

other. The smooth control surface is obtained in simulatioqh. d 1 ise th itV How (o i h
or experiment by perturbing the parameters that will be in- Ird parly 1o compromise the Security. How to improve the

volved in adaptive control. Although this scheme is quitesecurity while maintaining the robustness is an interesting

general, in practice finding a set of appropriate functionsand meaningful research topic for chaotic communications.
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